Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.880
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612821

RESUMO

Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate. The antibacterial effect of the Zn(II) complexes was studied against planktonic bacterial cells of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains. The results showed a moderate biocide activity in both types of planktonic bacteria, which arises from the metal complexation to the Schiff base ligand. Importantly, we confirmed the crucial effect of the metal, with Zn(II) improving the activity of Cu(II) counterparts previously reported. On the other hand, the impact of the inorganic ligands was not significant for the antibacterial effect but was relevant for the complex solubility. Finally, as proof of concept of topical antibacterial formulation, we formulated an emulsion containing the most lipophilic Zn(II) complex and confirmed a sustained release for 24 h in a vertical cell diffusion assay. The promising activity of iminopyridine Zn(II) complexes is potentially worth exploring in more detailed studies.


Assuntos
Complexos de Coordenação , Zinco , Zinco/farmacologia , Ligantes , Bases de Schiff/farmacologia , Nitratos , Complexos de Coordenação/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Plâncton
2.
Acc Chem Res ; 57(8): 1174-1187, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557015

RESUMO

ConspectusSupramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Platina/química
3.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593587

RESUMO

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico
4.
Eur J Med Chem ; 270: 116378, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604098

RESUMO

Infections caused by Staphylococcus aureus (S. aureus) are increasing difficult to treat because this pathogen is easily resistant to antibiotics. However, the development of novel antibacterial agents with high antimicrobial activity and low frequency of resistance remains a huge challenge. Here, building on the coupling strategy, an adamantane moiety was linked to the membrane-active Ru-based structure and then developed three novel metalloantibiotics: [Ru(bpy)2(L)](PF6)2 (Ru1) (bpy = 2,2-bipyridine, L = amantadine modified ligand), [Ru(dmb)2(L)](PF6)2 (Ru2) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(dpa)2(L)](PF6)2 (Ru3), (dpa = 2,2'-dipyridylamine). Notably, complex Ru1 was identified to be the best candidate agent, showing greater efficacy against S. aureus than most of clinical antibiotics and low resistance frequencies. Mechanism studies demonstrated that Ru1 could not only increase the permeability of bacterial cell membrane and then caused the leakage of bacterial contents, but also promoted the production of reactive oxygen species (ROS) in bacteria. Importantly, complex Ru1 inhibited the biofilm formation, exotoxin secretion and increased the potency of some clinical used antibiotics. In addition, Ru1 showed low toxic in vivo and excellent anti-infective efficacy in two animal infection model. Thus, Ru-based metalloantibiotic bearing adamantane moiety are promising antibacterial agents, providing a certain research basis for the future antibiotics research.


Assuntos
Adamantano , Complexos de Coordenação , Rutênio , Animais , Antibacterianos/farmacologia , Adamantano/farmacologia , Staphylococcus aureus , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
5.
Acc Chem Res ; 57(6): 933-944, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501206

RESUMO

ConspectusNuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.


Assuntos
Complexos de Coordenação , Medicina Nuclear , Humanos , Compostos Radiofarmacêuticos/química , Ácidos de Lewis , Complexos de Coordenação/química , Ligantes , Distribuição Tecidual , Radioisótopos/química , Quelantes/química , Metais , Íons
6.
Eur J Med Chem ; 268: 116295, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437750

RESUMO

This paper introduces a new ligand, 4,6-dichloro-5-(1H-imidazo [4,5-f]phenanthroline-2-yl)pyrimidin-2-amine (DPPA), and its corresponding new iridium(III) complexes: [Ir(ppy)2(DPPA)](PF6) (2a) (where ppy represents deprotonated 2-phenylpyridine), [Ir(bzq)2(DPPA)](PF6) (2b) (with bzq indicating deprotonated benzo[h]quinoline), and [Ir(piq)2(DPPA)](PF6) (2c) (piq denoting deprotonated 1-phenylisoquinoline). The cytotoxic effects of both DPPA and 2a, 2b, and 2c were evaluated against human lung carcinoma A549, melanoma B16, colorectal cancer HCT116, human hepatocellular carcinoma HepG2 cancer cell lines, as well as the non-cancerous LO2 cell line using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. While DPPA exhibited moderate anticancer activity toward A549, B16, HCT116 and HepG2 cells, complexes 2a, 2b, and 2c displayed remarkable efficacy against A549, B16, and HCT116 cells. The cell colonies and wound healing were investigated. Moreover, various aspects of the anticancer mechanisms were explored. The cell cycle analyses revealed that the complexes block cell proliferation of A549 cells during the S phase. Complex 2c induce an early apoptosis, while 2a and 2b cause a late apoptosis. The interaction of 2a, 2b and 2c with endoplasmic reticulum and mitochondria was identified, leading to elevated ROS and Ca2+ amounts. This resulted in a reduced mitochondrial membrane potential, mitochondrial permeability transition pore opening, and an increase of cytochrome c. Also, ferroptosis was investigated through measurements of intracellular glutathione (GSH), malondialdehyde (MDA), and recombinant glutathione peroxidase (GPX4) protein expression. The pyroptosis was explored via cell morphology, release of lactate dehydrogenase (LDH) and expression of pyroptosis-related proteins. RNA sequencing was applied to examine the signaling pathways. Western blot analyses illuminated that the complexes regulate the expression of Bcl-2 family proteins. Additionally, an in vivo antitumor study demonstrated that complex 2c exhibited a remarkable inhibitory rate of 58.58% in restraining tumor growth. In summary, the findings collectively suggest that the iridium(III) complexes induce cell death via ferroptosis, apoptosis by a ROS-mediated mitochondrial dysfunction pathway and GSDMD-mediated pyroptosis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ferroptose , Humanos , Linhagem Celular Tumoral , Irídio/farmacologia , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Mitocôndrias
7.
Molecules ; 29(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474543

RESUMO

Copper-organic compounds have gained momentum as potent antitumor drug candidates largely due to their ability to generate an oxidative burst upon the transition of Cu2+ to Cu1+ triggered by the exogenous-reducing agents. We have reported the differential potencies of a series of Cu(II)-organic complexes that produce reactive oxygen species (ROS) and cell death after incubation with N-acetylcysteine (NAC). To get insight into the structural prerequisites for optimization of the organic ligands, we herein investigated the electrochemical properties and the cytotoxicity of Cu(II) complexes with pyridylmethylenethiohydantoins, pyridylbenzothiazole, pyridylbenzimidazole, thiosemicarbazones and porphyrins. We demonstrate that the ability of the complexes to kill cells in combination with NAC is determined by the potential of the Cu+2 → Cu+1 redox transition rather than by the spatial structure of the organic ligand. For cell sensitization to the copper-organic complex, the electrochemical potential of the metal reduction should be lower than the oxidation potential of the reducing agent. Generally, the structural optimization of copper-organic complexes for combinations with the reducing agents should include uncharged organic ligands that carry hard electronegative inorganic moieties.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre/química , Substâncias Redutoras , Antineoplásicos/química , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Complexos de Coordenação/química , Ligantes
8.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474580

RESUMO

Most diseases that affect human beings across the world are now treated with drugs of organic origin. However, some of these are associated with side effects, toxicity, and resistance phenomena. For the treatment of many illnesses, the development of new molecules with pharmacological potential is now an urgent matter. The biological activities of metal complexes have been reported to have antitumor, antimicrobial, anti-inflammatory, anti-infective and antiparasitic effects, amongst others. Metal complexes are effective because they possess unique properties. For example, the complex entity possesses the effective biological activity, then the formation of coordination bonds between the metal ions and ligands is controlled, metal ions provide it with extraordinary mechanisms of action because of characteristics such as d-orbitals, oxidation states, and specific orientations; metal complexes also exhibit good stability and good physicochemical properties such as water solubility. Platinum is a transition metal widely used in the design of drugs with antineoplastic activities; however, platinum is associated with side effects which have made it necessary to search for, and design, novel complexes based on other metals. Copper is a biometal which is found in living systems; it is now used in the design of metal complexes with biological activities that have demonstrated antitumoral, antimicrobial and anti-inflammatory effects, amongst others. In this review, we consider the open horizons of Cu(II)- and Pt(II)-based complexes, new trends in their design, their synthesis, their biological activities and their targets of action.


Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/química , Complexos de Coordenação/química , Platina/química , Antineoplásicos/farmacologia , Anti-Infecciosos/farmacologia , Íons , Anti-Inflamatórios , Ligantes
9.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474631

RESUMO

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Metano/análogos & derivados , Neoplasias Ovarianas , Fosfinas , Feminino , Humanos , Cisplatino/química , Platina/química , Linhagem Celular Tumoral , Cianetos , Espectroscopia de Infravermelho com Transformada de Fourier , Complexos de Coordenação/química , Antineoplásicos/química , Ligantes
10.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474689

RESUMO

Hollow silica spheres have been widely studied for drug delivery because of their excellent biosecurity and high porosity. However, difficulties with degradation in the tumor microenvironment (TME) and premature leaking during drug delivery limit their clinical applications. To alleviate these problems, herein, hollow organosilica spheres (HOS) were initially prepared using a "selective etching strategy" and loaded with a photothermal drug: new indocyanine green (IR820). Then, the Cu2+-tannic acid complex (Cu-TA) was deposited on the surface of the HOS, and a new nanoplatform named HOS@IR820@Cu-TA (HICT) was finally obtained. The deposition of Cu-TA can gate the pores of HOS completely to prevent the leakage of IR820 and significantly enhance the loading capacity of HOS. Once in the mildly acidic TME, the HOS and outer Cu-TA decompose quickly in response, resulting in the release of Cu2+ and IR820. The released Cu2+ can react with the endogenous glutathione (GSH) to consume it and produce Cu+, leading to the enhanced production of highly toxic ·OH through a Fenton-like reaction due to the overexpressed H2O2 in the TME. Meanwhile, the ·OH generation was remarkably enhanced by the NIR light-responsive photothermal effect of IR820. These collective properties of HICT enable it to be a smart nanomedicine for dually enhanced chemodynamic therapy through GSH depletions and NIR light-triggered photothermal effects.


Assuntos
Complexos de Coordenação , Nanopartículas , Neoplasias , Polifenóis , Humanos , Peróxido de Hidrogênio , Sistemas de Liberação de Medicamentos , Glutationa , Microambiente Tumoral , Linhagem Celular Tumoral
11.
Viruses ; 16(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543689

RESUMO

HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA destabilizer with potent antiviral activity, inhibiting HBsAg expressed from cccDNA and integrated HBV DNA in HBV cell-based models. AB-161 exhibits broad HBV genotype coverage, maintains activity against variants resistant to nucleoside analogs, and shows additive effects on HBV replication when combined with other classes of HBV inhibitors. In AAV-HBV-transduced mice, the dose-dependent reduction of HBsAg correlated with concentrations of AB-161 in the liver reaching above its effective concentration mediating 90% inhibition (EC90), compared to concentrations in plasma which were substantially below its EC90, indicating that high liver exposure drives antiviral activities. In preclinical 13-week safety studies, minor non-adverse delays in sensory nerve conductance velocity were noted in the high-dose groups in rats and dogs. However, all nerve conduction metrics remained within physiologically normal ranges, with no neurobehavioral or histopathological findings. Despite the improved neurotoxicity profile, microscopic findings associated with male reproductive toxicity were detected in dogs, which subsequently led to the discontinuation of AB-161's clinical development.


Assuntos
Complexos de Coordenação , Vírus da Hepatite B , Hepatite B Crônica , Naftalenossulfonatos , Masculino , Camundongos , Ratos , Animais , Cães , Vírus da Hepatite B/fisiologia , Antígenos de Superfície da Hepatite B/genética , RNA Viral , RNA Mensageiro , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Viral/genética , Hepatite B Crônica/tratamento farmacológico , DNA Circular
12.
J Inorg Biochem ; 255: 112523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489864

RESUMO

The prevalence of antibiotic-resistant pathogenic bacteria poses a significant threat to public health and ranks among the principal causes of morbidity and mortality worldwide. Antimicrobial photodynamic therapy is an emerging therapeutic technique that has excellent potential to embark upon antibiotic resistance problems. The efficacy of this therapy hinges on the careful selection of suitable photosensitizers (PSs). Transition metal complexes, such as Ruthenium (Ru) and Iridium (Ir), are highly suitable for use as PSs because of their surface plasmonic resonance, crystal structure, optical characteristics, and photonics. These metals belong to the platinum family and exhibit similar chemical behavior due to their partially filled d-shells. Ruthenium and Iridium-based complexes generate reactive oxygen species (ROS), which interact with proteins and DNA to induce cell death. As photodynamic therapeutic agents, these complexes have been widely studied for their efficacy against cancer cells, but their potential for antibacterial activity remains largely unexplored. Our study focuses on exploring the antibacterial photodynamic effect of Ruthenium and Iridium-based complexes against both Gram-positive and Gram-negative bacteria. We aim to provide a comprehensive overview of various types of research in this area, including the structures, synthesis methods, and antibacterial photodynamic applications of these complexes. Our findings will provide valuable insights into the design, development, and modification of PSs to enhance their photodynamic therapeutic effect on bacteria, along with a clear understanding of their mechanism of action.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Rutênio/farmacologia , Rutênio/química , Irídio/farmacologia , Irídio/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
13.
J Inorg Biochem ; 255: 112524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507993

RESUMO

Copper can be opportunely complexed to modulate oncogenic pathways, being a promising strategy for cancer treatment. Herein, three new copper(II) complexes containing long-chain aliphatic hydrazides and 1,10-phenanthroline (1,10-phen), namely, [Cu(octh)(1,10-phen)(H2O)](NO3)21, [Cu(dech)(1,10-phen)(H2O)](NO3)22 and [Cu(dodh)(1,10-phen)(H2O)](NO3)2.H2O 3 (where octh = octanoic hydrazide, dech = decanoic hydrazide, dodh = dodecanoic hydrazide) were successfully prepared and characterized by several physical-chemical methods. Furthermore, X-ray structural analysis of complex 2 indicated that the geometry around the copper(II) ion is distorted square-pyramidal, in which hydrazide and 1,10-phenanthroline act as bidentate ligands. A water molecule in the apical position completes the coordination sphere of the metal ion. All new copper(II) complexes were cytotoxic to breast cancer cell lines (MCF7, MDA-MB-453, MDA-MB-231, and MDA-MB-157) and selective when compared to the non tumor lineage MCF-10A. In particular, complex 2 showed half-maximal inhibitory concentration (IC50) values ranging between 2.7 and 13.4 µM in MDA-MB231 cells after 24 and 48 h of treatment, respectively. Furthermore, this complex proved to be more selective for tumor cell lines when compared to doxorubicin and docetaxel. Complex 2 inhibited the clonogenicity of MDA-MB231 cells, increasing adenosine diphosphate (ADP) hydrolysis and upregulating ecto-nucleoside triphosphate diphosphohydrolase 1 (ENTPD1) transcriptional levels. In this sense, we suggest that the inhibitory effect on cell proliferation may be related to the modulation of adenosine monophosphate (AMP) levels. Thus, a novel copper(II) complex with increased cytotoxic effects and selectivity against breast cancer cells was obtained, contributing to medicinal chemistry efforts toward the development of new chemotherapeutic agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias de Mama Triplo Negativas , Humanos , Cobre/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Hidrazinas , Hidrólise , Antineoplásicos/farmacologia , Antineoplásicos/química , Fenantrolinas/farmacologia , Fenantrolinas/química , Difosfato de Adenosina , Cristalografia por Raios X
14.
J Inorg Biochem ; 255: 112525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522216

RESUMO

Four erbium(III) complexes with the fluoroquinolones enrofloxacin, levofloxacin, flumequine and sparfloxacin as ligands were synthesized and characterized by a wide range of physicochemical and spectroscopic techniques as well as single-crystal X-ray crystallography. The compounds were evaluated for their activity against the bacterial strains Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Xanthomonas campestris, which was higher than that of the corresponding free quinolones. The interaction mode of the complexes with calf-thymus DNA is via intercalation, as suggested by diverse studies such as UV-vis spectroscopy, DNA-viscosity measurements and competitive studies with ethidium bromide. Fluorescence emission spectroscopy revealed the high affinity of the complexes for bovine and human serum albumin and the determined binding constants suggested a tight and reversible binding of the compounds with both albumins.


Assuntos
Complexos de Coordenação , Quinolonas , Animais , Bovinos , Humanos , Érbio , Fluoroquinolonas/farmacologia , Fluoroquinolonas/química , Albuminas , Quinolonas/química , DNA/química , Complexos de Coordenação/química , Cristalografia por Raios X , Soroalbumina Bovina/química
15.
Dalton Trans ; 53(14): 6410-6415, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501501

RESUMO

An asymmetric bi-nuclear copper(II) complex with both cytotoxic and immunogenic activity towards breast cancer stem cells (CSCs) is reported. The bi-nuclear copper(II) complex comprises of two copper(II) centres bound to flufenamic acid and 3,4,7,8-tetramethyl-1,10-phenanthroline. The bi-nuclear copper(II) complex exhibits sub-micromolar potency towards breast CSCs grown in monolayers and three-dimensional cultures. Remarkably, the bi-nuclear copper(II) complex is up to 25-fold more potent toward breast CSC mammospheres than salinomycin (a gold standard anti-breast CSC agent) and cisplatin (a clinically administered metallodrug). Mechanistic studies showed that the bi-nuclear copper(II) complex readily enters breast CSCs, elevates intracellular reactive oxygen species levels, induces apoptosis, and promotes damage-associated molecular pattern release. The latter triggers phagocytosis of breast CSCs by macrophages. As far as we are aware, this is the first report of a bi-nuclear copper(II) complex to induce engulfment of breast CSCs by immune cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ácido Flufenâmico/metabolismo , Cobre/metabolismo , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Células-Tronco Neoplásicas
16.
Mol Pharm ; 21(4): 1987-1997, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507593

RESUMO

The misuse and overdose of antimicrobial medicines are fostering the emergence of novel drug-resistant pathogens, providing negative repercussions not only on the global healthcare system due to the rise of long-term or chronic patients and inefficient therapies but also on the world trade, productivity, and, in short, to the global economic growth. In view of these scenarios, novel action plans to constrain this antibacterial resistance are needed. Thus, given the proven antiproliferative tumoral and microbial features of thiosemicarbazone (TSCN) ligands, we have here synthesized a novel effective antibacterial copper-thiosemicarbazone complex, demonstrating both its solubility profile and complex stability under physiological conditions, along with their safety and antibacterial activity in contact with human cellular nature and two most predominant bacterial strains, respectively. A significant growth inhibition (17% after 20 h) is evidenced over time, paving the way toward an effective antibacterial therapy based on these copper-TSCN complexes.


Assuntos
Anti-Infecciosos , Complexos de Coordenação , Compostos Organometálicos , Tiossemicarbazonas , Humanos , Cobre/farmacologia , Tiossemicarbazonas/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia
17.
Dalton Trans ; 53(14): 6459-6471, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512047

RESUMO

Metal complexes play a crucial role in photo-activated chemotherapy (PACT), which has recently been used to treat specific disorders. Triple-negative breast cancer has an enormously high rate of relapse due to the existence and survival of cancer stem cells (CSCs) characterized by increased amounts of glutathione (GSH). Hence, designing a phototoxic molecule is an enticing area of research to combat triple-negative breast cancer (TNBC) via GSH depletion and DNA photocleavage. Herein, we focus on the application of PTA and non-PTA Ir(III) complexes for phototoxicity in the absence and presence of GSH against MDA-MB-231 TNBC cells. Between these two complexes, [Cp*IrIII(DD)PTA]·2Cl (DDIRP) exhibited better phototoxicity (IC50 ∼ 2.80 ± 0.52 µM) compared to the non-PTA complex [Cp*IrIII(DD)Cl]·Cl (DDIR) against TNBC cells because of the high GSH resistance power of the complex DDIRP. The significant potency of the complex DDIRP under photo irradiation in both normoxia and hypoxia conditions can be attributed to selective transportation, high cellular permeability and uptake towards the nucleus, GSH depletion by GSH-GSSG conversion, the ability of strong DNA binding including intercalation, and oxidative stress. The strong affinity to serum albumin, which serves as a carrier protein, aids in the transport of the complex to its target site while preventing glutathione (GSH) deactivation. Consequently, the complex DDIRP was developed as a suitable phototoxic complex in selective cancer therapy, ruling over the usual chemotherapeutic drug cisplatin and the PDT drug Photofrin. The ability of ROS generation under hypoxic conditions delivers this complex as a hypoxia-efficient selective metallodrug for the treatment of TNBC.


Assuntos
Antineoplásicos , Complexos de Coordenação , Quinolinas , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Complexos de Coordenação/química , Glutationa/metabolismo , Hipóxia , DNA , Linhagem Celular Tumoral
18.
Bioorg Chem ; 146: 107281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484588

RESUMO

A novel indole based NNN donor Schiff base ligand and its Ni(II), Zn(II) and Cd(II) complexes have been synthesized using sonication-assisted method which is a highly efficient eco-friendly mechanism. The synthesized complexes have been characterized using elemental analysis, UV-Vis spectroscopy, mass spectrometry, FT-IR, and NMR and are optimized using DFT approach, which provided their theoretical framework. The stoichiometry between the ligand and the metal ions was also determined using Job's method. The thermogravimetric (TGA/DSC) analyses confirm the stability for all complexes at room temperature followed by thermal decomposition in different steps. DNA binding activities have been assessed by employing UV-visible and fluorescence spectra using the CT-DNA. The estimated intrinsic binding constant (Kb) for NiL, ZnL, and CdL complexes was 6.00 × 105, 5.58 × 105, and 4.7 × 105, respectively. In accordance with the Kb value, the quenching constant (Ksv) values of NiL, ZnL, and CdL are 5.59 × 105 M-1, 4.3 × 105 M-1, and 4.08 × 105 M-1 respectively. The anticancer properties have been assessed using MTT Assay. It has been found that the Ni(II) complex (NiL) is the most potent among the series with IC50 of 169 µg/mL. An in-vitro antioxidant experiment using DPPH was used to evaluate the synthesizedcomplexes' ability to scavenge free radicals. The findings indicated that the complexes exhibited notable antioxidant properties. The antioxidant property ZnL has been found to be the highest with an IC50 of 2.91 µg/mL and it follows the order is ZnL > NiL > CdL > L. Using the egg albumin denaturation technique, the anti-inflammatory property have been assessed, and the amount of protein denaturation inhibition has been computed. NiL has the highest % inhibition among the series studied. Comparatively, the metal complexes have been reported to exhibit higher biological activities than the prepared Schiff base ligand. The reason for the excellent biological properties observed in the metal complexes could be attributed to the incorporation of the electron-withdrawing CH3COO- during complexation. Molecular docking studies have been performed on the 2GYT protein and it has been found that the complexes have excellent binding affinity, with NiL having the lowest binding energy of -6.93 Kcal mol-1. The values suggested that NiL is more effective against HePG2 cancer cells, which is also in accordance with the MTT Assay results.


Assuntos
Complexos de Coordenação , Bases de Schiff , Bases de Schiff/química , Complexos de Coordenação/química , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/química , Ligantes , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Sonicação , DNA/química , Bioensaio
19.
J Med Chem ; 67(5): 3843-3859, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442035

RESUMO

To develop a potential theranostic metal agent to reverse the resistance of cancer cells to cisplatin and effectively inhibit tumor growth and metastasis, we proposed to design a cyclometalated iridium (Ir) complex based on the properties of the tumor environment (TME). To the end, we designed and synthesized a series of Ir(III) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes by modifying the hydrogen atom(s) of the N-3 position of 2-hydroxy-1-naphthaldehyde thiosemicarbazone compounds and the structure of cyclometalated Ir(III) dimers and then investigated their structure-activity and structure-fluorescence relationships to obtain an Ir(III) complex (Ir5) with remarkable fluorescence and cytotoxicity to cancer cells. Ir5 not only possesses mitochondria-targeted properties but also overcomes cisplatin resistance and effectively inhibits tumor growth and metastasis in vivo. Besides, we confirmed the anticancer mechanisms of Ir5 acting on different components in the TME: directly killing liver cancer cells by inducing necroptosis and activating the necroptosis-related immune response.


Assuntos
Antineoplásicos , Complexos de Coordenação , Naftalenos , Neoplasias , Tiossemicarbazonas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/química , Irídio/farmacologia , Irídio/química , Medicina de Precisão , Necroptose , Neoplasias/tratamento farmacológico , Mitocôndrias , Complexos de Coordenação/química , Linhagem Celular Tumoral
20.
Sci Rep ; 14(1): 5929, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467696

RESUMO

The copper compound CuII(atsm) has progressed to phase 2/3 testing for treatment of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). CuII(atsm) is neuroprotective in mutant SOD1 mouse models of ALS where its activity is ascribed in part to improving availability of essential copper. However, SOD1 mutations cause only ~ 2% of ALS cases and therapeutic relevance of copper availability in sporadic ALS is unresolved. Herein we assessed spinal cord tissue from human cases of sporadic ALS for copper-related changes. We found that when compared to control cases the natural distribution of spinal cord copper was disrupted in sporadic ALS. A standout feature was decreased copper levels in the ventral grey matter, the primary anatomical site of neuronal loss in ALS. Altered expression of genes involved in copper handling indicated disrupted copper availability, and this was evident in decreased copper-dependent ferroxidase activity despite increased abundance of the ferroxidases ceruloplasmin and hephaestin. Mice expressing mutant SOD1 recapitulate salient features of ALS and the unsatiated requirement for copper in these mice is a biochemical target for CuII(atsm). Our results from human spinal cord indicate a therapeutic mechanism of action for CuII(atsm) involving copper availability may also be pertinent to sporadic cases of ALS.


Assuntos
Esclerose Amiotrófica Lateral , Complexos de Coordenação , Doenças Neurodegenerativas , Tiossemicarbazonas , Humanos , Camundongos , Animais , Cobre/metabolismo , Esclerose Amiotrófica Lateral/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Doenças Neurodegenerativas/metabolismo , Camundongos Transgênicos , Medula Espinal/metabolismo , Ceruloplasmina/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...